手机浏览器扫描二维码访问
有时候他们真的很好奇,这些数学天才脑子到底都是怎么长得,怎么就那么聪明,能把一堆数学符号和极其复杂的数学公式和定理给吃的透透的。
要是能把他们的数学天赋分给他们一点,他们当初也不至于看到数学就头痛,最后只能无奈选了文科。
“陆凡,具体解释一下吧。”
陈锐把展现的舞台完全交给了陆凡。
“其实这道题并不难,只要找到正确的方法,就能轻松解决。”陆凡微笑着说道,开始解释自己的答案。
“从题目中我们可以一眼看到,这道题和Fermat小定理有很深的背景。”
“Fermat小定理说:若p为素数,对任意整数a,且a与p互素(也即p?a,除了k×p的数),满足ap?1≡1(modp)。
那我们就要考虑一个问题,Fermat小定理的逆命题是否依然成立呢?
也就是说,如果对所有与m互素的a,都满足
小主,这个章节后面还有哦,请点击下一页继续阅读,后面更精彩!
am?1≡1(modm)。
请问m是否一定是素数?
显然这道题是Fermat小定理的逆命题不成立的一个反例。”
说到这,陆凡微微顿了顿,目光看向场上众人,想知道他们是否能听明白自己的解释。
结果很明显,只有一小部分人听懂了,但更多的人则是一脸茫然,就好像在跟听天书一样。
这就是天赋上的差距,没办法。
“那下面我来具体证明一下。
由于m=561=3×11×17,所以m不是素数。
另外a与m互素,因此3?a,11?a,17?a,则根据Fermat小定理有a2≡1(mod?3),a10≡1(mod??11),a16≡1(mod?17)。
但是2∣560,10∣560,16∣560,所以a560对3,11,17中的每一个模也都余1,即
a560≡1(mod?3),a560≡1(mod?11),a560≡1(mod?17)
由于3,11,17的最小公倍数为3×11×17=561=m。
根据同余性质,可知
a560≡1(mod561)成立。
这个反例就说明了Fermat小定理的逆命题是不成立的,那么这道题的整个论证过程就已经完全出来了。”
说到这,陆凡再次停顿,目光看向陈锐和李冉。
喜欢和高冷女教师领证,全校都惊了()和高冷女教师领证,全校都惊了。
普通人只要有机会,也可以封侯拜相。看王子枫一个普通的小人物,如何抓住机会搅动风云。每个人都可能是千里马。...
官场如战场,尔虞我诈,勾心斗角,可陆浩时刻谨记,做官就要做个好官,要有两颗心,一颗善心,一颗责任心。且看陆浩一个最偏远乡镇的基层公务员,如何在没有硝烟的权利游戏里一路绿灯,两袖清风,不畏权贵,官运亨通。...
关于永恒之门神魔混战,万界崩塌,只永恒仙域长存世间。尘世罹苦,妖祟邪乱,诸神明弃众生而不朽。万古后,一尊名为赵云的战神,凝练了天地玄黄,重铸了宇宙洪荒,自碧落凡尘,一路打上了永恒仙域,以神之名,君临万道。自此,他说的话,便是神话。...
叶峰一踏上官梯就遇到两类险情一是多种危险的感情,二是各种惊险的官斗。叶峰三十六岁就被提拔为县教育局副局长,从报到那天起就被卷入这两种险情的惊涛骇浪中。他是草根出生,却有顽强的意志和搏击风浪的能力,他像一叶小舟在惊险莫测的宦海里沉浮出没,劈波斩浪,扬帆远航,步步高升。...
官场是什么?官场是权力的游戏。官场远比江湖更为险恶。千帆竞渡百舸争流!跨过去那就是海阔任潮涌风劲好扬帆!官场的规矩是什么?正确就是官场的最大规矩!重活一世。刘项东洞悉一切。他不仅能正确,还会一直正确下去!重生是风自身为鹏大鹏一日同风起,这辈子,我刘项东要扶摇直上九万里!...
精神发疯文学,没有原型,没有原型,没有原型(讲三遍),请不要在评论区提真人哦。金手指奇大,cp沈天青。日六,防盗八十,上午十一点更新江繁星八岁时候看见律政电视剧里的帅哥美女环游世界谈恋爱...