手机浏览器扫描二维码访问
有时候他们真的很好奇,这些数学天才脑子到底都是怎么长得,怎么就那么聪明,能把一堆数学符号和极其复杂的数学公式和定理给吃的透透的。
要是能把他们的数学天赋分给他们一点,他们当初也不至于看到数学就头痛,最后只能无奈选了文科。
“陆凡,具体解释一下吧。”
陈锐把展现的舞台完全交给了陆凡。
“其实这道题并不难,只要找到正确的方法,就能轻松解决。”陆凡微笑着说道,开始解释自己的答案。
“从题目中我们可以一眼看到,这道题和Fermat小定理有很深的背景。”
“Fermat小定理说:若p为素数,对任意整数a,且a与p互素(也即p?a,除了k×p的数),满足ap?1≡1(modp)。
那我们就要考虑一个问题,Fermat小定理的逆命题是否依然成立呢?
也就是说,如果对所有与m互素的a,都满足
小主,这个章节后面还有哦,请点击下一页继续阅读,后面更精彩!
am?1≡1(modm)。
请问m是否一定是素数?
显然这道题是Fermat小定理的逆命题不成立的一个反例。”
说到这,陆凡微微顿了顿,目光看向场上众人,想知道他们是否能听明白自己的解释。
结果很明显,只有一小部分人听懂了,但更多的人则是一脸茫然,就好像在跟听天书一样。
这就是天赋上的差距,没办法。
“那下面我来具体证明一下。
由于m=561=3×11×17,所以m不是素数。
另外a与m互素,因此3?a,11?a,17?a,则根据Fermat小定理有a2≡1(mod?3),a10≡1(mod??11),a16≡1(mod?17)。
但是2∣560,10∣560,16∣560,所以a560对3,11,17中的每一个模也都余1,即
a560≡1(mod?3),a560≡1(mod?11),a560≡1(mod?17)
由于3,11,17的最小公倍数为3×11×17=561=m。
根据同余性质,可知
a560≡1(mod561)成立。
这个反例就说明了Fermat小定理的逆命题是不成立的,那么这道题的整个论证过程就已经完全出来了。”
说到这,陆凡再次停顿,目光看向陈锐和李冉。
喜欢和高冷女教师领证,全校都惊了()和高冷女教师领证,全校都惊了。
意外撞见女上司在办公室和陌生男人勾勾搭搭,齐涛偷偷拍下照片,依靠这个底牌,他一路逆袭,而女领导对他也由最开始的恨,逐渐改变了态度...
精神发疯文学,没有原型,没有原型,没有原型(讲三遍),请不要在评论区提真人哦。金手指奇大,cp沈天青。日六,防盗八十,上午十一点更新江繁星八岁时候看见律政电视剧里的帅哥美女环游世界谈恋爱...
性格嚣张的林飞扬走马上任镇委书记当天就得罪了顶头上司,让大领导颜面无存,差点被就地免职,且看这个嚣张到骨子里的家伙如何凭借孙子兵法和三十六计勇闯重重危机,智破层层陷阱,在官场上混得风生水起,扶摇直上…...
妻子背叛,对方是县里如日中天的副县长!一个离奇的梦境,让李胜平拥有了扭转局势的手段!即将被发配往全县最穷的乡镇!李胜平奋起反击!当他将对手踩在脚下的时候,这才发现,这一切不过只是冰山一角!斗争才刚刚开始!...
关于永恒之门神魔混战,万界崩塌,只永恒仙域长存世间。尘世罹苦,妖祟邪乱,诸神明弃众生而不朽。万古后,一尊名为赵云的战神,凝练了天地玄黄,重铸了宇宙洪荒,自碧落凡尘,一路打上了永恒仙域,以神之名,君临万道。自此,他说的话,便是神话。...
草根男人赵潜龙怀揣为民之念,投身仕途。且看他如何一路横空直撞,闯出一条桃运青云路,醒掌绝对权力醉卧美人膝...